

Three-dimensional heat flow simulation for the determination of

heat bridge loss coefficients of installation housings in composite thermal insulation systems

On behalf of the company

KAISER GmbH & Co. KG

Ramsloh 4

58579 Schalksmühle

Germany

Brief expert report on the simulation

Note: This document is a third party translation. Only the original German version of this document is legally valid.

> Author: Adrian Muskatewitz, M.Eng.

> > March 2017

1 Introduction

On behalf of Kaiser GmbH & Co. KG, the Passivhaus Institut Dr Wolfgang Feist determined the heat bridge loss coefficients and the room-side surface temperatures of installation housings in external composite thermal insulation systems. A composite thermal insulation system served as a reference wall structure for determining the heat losses. The reference model used represents a system structure to be found for the installation housing type. The client provided the necessary documents for this purpose.

Due to the possibility of dispensing with a separate heating system, passive houses place high demands on the quality of the components used. In addition to excellent heat insulation, high air tightness, highly efficient heat recovery and passive house windows, the absence of heat bridges in the thermal envelope is of outstanding importance for the function of the passive house.

2 Specifications for heat flow calculation

The calculations were carried out using the SOLIDO software from Physibel, Belgium. Table 1 lists the materials used in the calculation and their heat conductivities in conjunction with the colours selected for the illustration. Sources for the heat conductivities are the relevant standards and the data sheets provided by the manufacturer.

Туре	CEN-rule	Name	Pat.	Mesh	λ	3	θ	h
					[W/mK]	[-]	[°C]	[W/m ² K]
MATERIAL		HIPS		100.00	0.220			
MATERIAL		Heat insulation		100.00	0.032			
MATERIAL		Glass		100.00	1.000			
MATERIAL		Screw		100.00	17.000			
MATERIAL		Interior plaster		100.00	0.510			
MATERIAL		Exterior plaster		100.00	0.700			
MATERIAL		Screed		100.00	1.400			
MATERIAL		Impact sound insulation		100.00	0.060			
MATERIAL		Reinforced concrete		100.00	2.300			
MATERIAL		Cable_eq		100.00	15.000			
MATERIAL		Wood		100.00	0.130			
MATERIAL		NEOPOR		100.00	0.032			
BC_SIMPL	NIHIL	BCE		100.00			-10.0	25.00
BC_SIMPL	NIHIL	BCI - HFhorizontal		100.00			20.0	7.69
BC_SIMPL	NIHIL	BCI - HFvertical		100.00			20.0	6.00
MATERIAL		Dowel		100.00	0.270			
MATERIAL		Air		100.00	0.100			
MATERIAL		Air		100.00	0.040			
MATERIAL		EQ		100.00	5.000			

Table 1: Materials used, heat conductivities and colour coding

The following boundary conditions were applied:

Outdoor temperature:	-10 °C
External heat resistance:	0.04 m ² K/W
Indoor temperature:	20 °C
Internal heat resistance:	0.13 m ² K/W
Vertical heat resistance:	0.17 m ² K/W

3 Modelling

The installation housings in composite thermal insulation systems were converted into a calculation model required for the FEM heat flow simulation using a threedimensional drawing model provided and inserted into the model of a façade structure with an composite thermal insulation system.

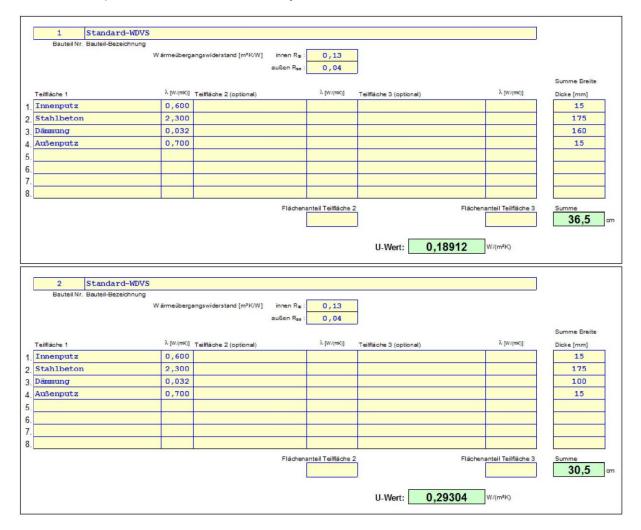


Figure 1: ETICS wall constructions - determination of the one-dimensional heat transfer

3 Standard-WDVS Bauteil Nr. Bauteil-Bezeichnung	Deckenaufbau					
				-	i.	
	Wärmeübergangswiderstand [r	n²K/W] innen R _s :	0,16			
		außen R _{sa} :	0,04	J		
						Summe Breite
Teilfläche 1	λ [W/(mK)] Teilfläche 2 (optic	onal)	λ [W/(mK)]	Teilfläche 3 (optional)	λ [W/(mK)]	Dicke [mm]
1. Holzboden	0,130			1		25
2. Estrich	1,400					60
3. Trittschalldämmung	0,060					30
4. Stahlbeton	2,300					175
5. Dämmung	0,032					160
6. Außenputz	0,700					15
7.						
8.				6		
		Eläshaas	nteil Teilfläche 2		Flächenanteil Teilfläche 3	Summe
		Fladiena	ntell Telliache 2	1	Flachenanter Teimache 3	46.5 cm
		L		J		40,5
				U-Wert: 0,16	5576 W/(m²K)	
4 Standard-WDVS	Deckenaufbau					
Bauteil Nr. Bauteil-Bezeichnung				-		
	Wärmeübergangswiderstand [rr	n²K/W] innen Rs :	0,16]		
	Wärmeübergangswiderstand [n	n²K/W] innen Rs∷ außen Rsa∶	0,16]		
	Wärmeübergangswiderstand [n	Contraction of the second s]		Summe Breite
	Wärmeübergangswiderstand [n λ [W:(mK)] Teilfläche 2 (optic	außen R _{se} :		Teifläche 3 (optional)	λ[w/(mk)]	Summe Breite Dicke [mm]
Teilliáche 1		außen R _{se} :	0,04	Teifláche 3 (optional)	رکس)(۸۸) در	
Teilliáche 1 1. Holzboden	λ [W/(mK)] Teilfläche 2 (optic	außen R _{se} :	0,04	Teiffáche 3 (optional)	λ. [6//(msC)]	Dicke [mm]
Teilliáche 1 1. Holzboden 2. Estrich	λ [W/(mG)] Teilfläche 2 (optic	außen R _{se} :	0,04	Teiffáche 3 (optional)	[(2m)/m] k	Dicke [mm]
	λ (W/(mk)) Teilfläche 2 (opti 0,130 1,400	außen R _{se} :	0,04	Teiffáche 3 (optional)	[2m]/M] Å	Dicke [mm] 25 60
Teiffäche 1 1. Holzboden 2. Estrich 3. Trittschalldämmung 4. Stahlbeton	λ [W/(mK)] Telffache 2 (opti 0,130 1,400 0,060	außen R _{se} :	0,04	Teiffische 3 (optional)	λ [m/(mc)]	Dicke [mm] 25 60 30
Teilläche 1 1. Holzboden 2. Estrich 3. Trittschalldämmung 4. Stahlbeton 5. Dämmung	λ (W/(mK)) Teilfläche 2 (opti 0,130 1,400 0,060 2,300	außen R _{se} :	0,04	Teiffläche 3 (optional)	λ [w/(mc)]	Dicke [mm] 25 60 30 175
Teilliche 1 1. Holzboden 2. Estrich 3. Trittschalldämmung 4. Stahlbeton 5. Dämmung 6. Außenputz	λ [W/(mK)] Telflische 2 (optit 0,130 1,400 0,060 2,300 0,032	außen R _{se} :	0,04	Teiffäche 3 (optional)	λ [M/(mc)]	Dicke [mm] 25 60 30 175 100
Teilliche 1 1. Holzboden 2. Estrich 3. Trittschalldämmung 4. Stahlbeton 5. Dämmung 6. Außenputz 7.	λ [W/(mK)] Telflische 2 (optit 0,130 1,400 0,060 2,300 0,032	außen R _{se} :	0,04	Teiffläche 3 (optional)	λ [(2m)/m2)	Dicke [mm] 25 60 30 175 100
Teilläche 1 1. Holzboden 2. Estrich 3. Trittschalldämmung 4. Stahlbeton 5. Dämmung	λ [W/(mK)] Telflische 2 (optit 0,130 1,400 0,060 2,300 0,032	außen R ₅₈ :	0,04 λ.[w/(mK)]			Dicke [mm] 25 60 30 175 100 15
Teilliche 1 1. Holzboden 2. Estrich 3. Trittschalldämmung 4. Stahlbeton 5. Dämmung 6. Außenputz 7.	λ [W/(mK)] Telflische 2 (optit 0,130 1,400 0,060 2,300 0,032	außen R ₅₈ :	0,04		λ. (M/(mG)	Dicke [mm] 25 60 30 175 100 15 Summe
Teilliche 1 1. Holzboden 2. Estrich 3. Trittschalldämmung 4. Stahlbeton 5. Dämmung 6. Außenputz 7.	λ [W/(mK)] Telflische 2 (optit 0,130 1,400 0,060 2,300 0,032	außen R ₅₈ :	0,04 λ.[w/(mK)]			Dicke [mm] 25 60 30 175 100 15
Teilliche 1 1. Holzboden 2. Estrich 3. Trittschalldämmung 4. Stahlbeton 5. Dämmung 6. Außenputz 7.	λ [W/(mK)] Telflische 2 (optit 0,130 1,400 0,060 2,300 0,032	außen R ₅₈ :	0,04 λ.[w/(mK)]			Dicke [mm] 25 60 30 175 100 15 Summe

Figure 2: ETICS ceiling structures - determination of the one-dimensional heat transfer

For the three-dimensional heat flow calculation, the model was divided into finite elements using a three-dimensional mesh. In the area of the installation housing, the mesh size of the net is $0.5 \times 0.5 \times 0.5$ mm. It increases towards the edges of the model. The model comprises a total of approx. 6,100,000 nodes.

The various installation housings are modelled with the reference wall structures and their point heat bridge loss coefficient (X_{WB} in W/K) is calculated. The heat bridge loss coefficients are calculated from the difference between the one-dimensional heat transfer Φ_{1D} of the undisturbed model (see Fig. 1 - ETICS), or the heat flow from the undisturbed model, and the simulated heat flow of the composite thermal insulation system with installation housing Φ_{3D} .

Figure 3 shows the housing model as a modelled FEM simulation model.

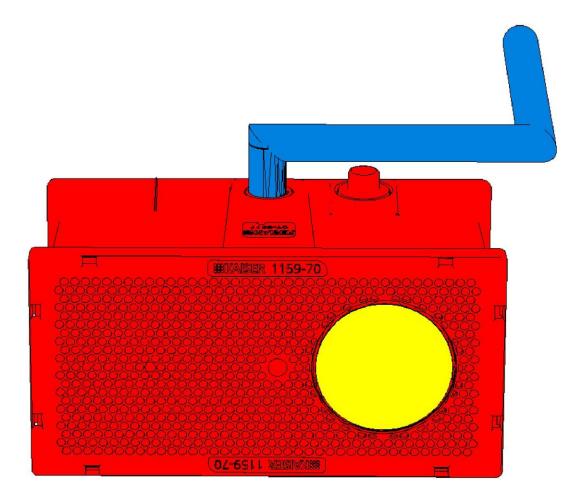


Figure 3: Calculation model for installation housing in composite thermal insulation system

4 Results

The results of the heat flow simulation are documented below. In addition to the heat bridge loss coefficients, the minimum surface temperatures T_{min} were also determined. These are determined at -10°C outside temperature and 20°C operative room temperature.

If the light is used in the installation housing in accordance with the manufacturer's instructions, condensation or an increased risk of mould on the room-side surface can be ruled out. Using the FEM simulation, an f_{Rsi} value of 0.97 was determined for an insulation thickness of 160 mm. With 100 mm insulation thickness of the regular insulation, the f_{Rsi} value is 0.96.

$$f_{Rsi} = \frac{\theta_{si} - \theta_e}{\theta_i - \theta_e}$$

With θ_{si} :Min. internal surface temperature from heat flow simulation [°C] θ_{e} :Outdoor temperature from heat flow simulation [°C]

 θ_i : Internal temperature from heat flow simulation [°C]

The heat bridge loss coefficients were determined in a thermal insulation composite system with an insulation layer that has a heat conductivity of 0.032 W/mK. If the heat conductivity of the regular insulation layer is lower, the heat bridge loss coefficients increase.

Diagram 1: Overview of the results of the FEM simulation

Note: Heat bridge loss coefficients for insulation thicknesses between 100 mm and 160 mm can be roughly taken from the diagram.

SOLIDO - Calculation Results

SOLIDO data file: 160 opt.sld

Number of nodes = 3635602Heat flow divergence for total object = 6.27527e-009Heat flow divergence for worst node = 200

Col.	Туре	Name	tmin [°C]	Node	tmax [°C]	Node
4	MATERIAL	HIPS	-10.04366	263396	16.57837	187188
6	MATERIAL	Heat insulation	-9.71980	63457	18.69229	18386
7	MATERIAL	Glass	-8.24220	2723634	-7.53927	2237817
11	MATERIAL	Screw	15.41272	1759340	16.30406	1778739
20	MATERIAL	Interior plaster	19.00848	2347370	19.53744	19218
44	MATERIAL	Exterior plaster	-9.83452	64308	-7.49681	1624377
79	MATERIAL	Screed	18.49609	2194071	19.65599	19242
101	MATERIAL	Impact sound	16.55509	2097867	19.62175	19241
		insulation				
104	MATERIAL	Reinforced concrete	15.80685	1797405	19.42998	19230
106	MATERIAL	Cable eq	13.76520	1860978	17.17819	3556685
159	MATERIAL	Wood	18.65913	2174841	19.84227	19243
165	MATERIAL	NEOPOR	-3.69348	1334262	16.11366	166943
171	BC SIMPL	BCE	-10.04366	263396	-7.76893	2547337
174	BC_SIMPL	BCI - HFhorizon	19.20445	2347508	19.53744	19218

<pre>175 BC_SIMPL 181 MATERIAL 192 MATERIAL 193 MATERIAL 200 MATERIAL</pre>	Dowel Air Air EQ	HFvertika	19.37 15.80 -9.41 -4.00 -6.01	30417786951166521277	305 16.34 891 16.69	54917979837841229982755129459
Node	Х	Y	Z			
263396	400.00	546.25	562.20			
187188	395.10	553.41	750.00			
63457	300.00	482.50	590.00			
18386	0.00	825.00	607.31			
2723634	559.99	531.18	582.50			
2237817	528.75 497.79	480.00 501.13	585.00 740.29			
1759340 1778739	497.79	501.13	740.29			
2347370	535.00	1000.00	747.82			
19218	0.00	1250.00	735.00			
64308	300.00	490.00	575.00			
1624377	488.75	500.00	583.83			
2194071	526.25	0.00	955.00			
19242	0.00	1250.00	1015.00			
2097867	520.00	0.00	925.00			
19241	0.00	1250.00	955.00			
1797405	500.00	497.50	750.00			
19230	0.00	1250.00	750.00			
1860978	503.61	548.75	726.83			
3556685	636.36	584.62	884.73			
2174841	525.00	0.00	1015.00			
19243	0.00	1250.00	1040.00			
1334262	470.00	486.25	720.22			
166943	393.89	545.00	748.50			
263396	400.00	546.25	562.20			
2547337	548.75	500.00	582.50			
2347508 19218	535.00	1015.00 1250.00	722.73 735.00			
2136356	0.00 522.50	0.00	1040.00			
19243	0.00	1250.00	1040.00			
1778305	498.17	498.31	750.00			
1797983	499.97	502.70	781.69			
116891	390.76	445.31	584.14			
1229982	462.76	588.75	750.00			
1277104	466.25	491.25	719.04			
129459	390.76	553.75	750.00			
253236	400.27	457.91	589.11			
3359203	600.77	541.25	719.04			
Col. Type	Name		ta	Flow in	Flow out	
			[°C]	[W]	[W]	
171 BC SIMP	L BCE			0.00056	8.33197	
174 BC SIMP	L BCI -	HFhorizon		5.22744	0.00000	
175 BC_SIMP	L BCI -	HFvertika		3.10390	0.00000	
SOLIDO - Calo	ulation	Results				
SOLIDO data f	file: 100	O_opt.sld				
Number of not	les = 26	44232				
Heat flow div			object = 0	.000237157		
Heat flow div	-		-			
	<u> </u>					

Col.	Туре	Name	tmin	Node	tmax	Node
			[°C]		[°C]	

4	MATERIAL	HIPS			-9.39	332	96533	15.25927	159837
6	MATERIAL	Heat i	nsulation		-9.53	849	1474601	17.91506	12899
7	MATERIAL				-8.39		1938965	-7.87590	1860251
11	MATERIAL				14.07		1275013	14.95761	1288772
20			or plaster		18.45		1881656	19.28205	13623
44			or plaster		-9.69		1365295		12809
79	MATERIAL				17.83		1746460		13649
101	MATERIAL				15.04		1651459	19.41676	13648
TOT	MAIERIAL	insula			13.04	ZJI	1031439	19.41070	13040
104	машертат			o+ 0	14.47	л 1 л	1202027	19.11523	13635
104			orced concr	ele			1302027		
106	MATERIAL		eq		12.22		1346976	15.95936	2560633
159	MATERIAL				18.07		1719333	19.75684	13650
165	MATERIAL		ξ		-5.11		973521	14.74434	145500
171	BC_SIMPL				-9.69		1365295	-8.02552	1860249
174	_		HFhorizon		18.75		1922414	19.28205	13623
175			HFvertika		19.10		1732898	19.75684	13650
181	MATERIAL	Dowel			14.47		1288475	14.99624	1302423
192	MATERIAL	Air			-9.32	825	110282	15.41055	899289
193	MATERIAL	Air			-5.43	949	810406	15.28575	118887
200	MATERIAL	EQ			-6.44	100	206816	-4.05965	2407214
N	ode	Х	Y		Z				
96	533 3	90.00	443.74	642	.43				
159		95.10	553.41		.00				
1474		16.25	362.00		.00				
	899	0.00	825.00		.00				
1938		58.67	468.03		.50				
1860		51.25	501.25		.50				
1275		97.79	501.13		.29				
1288		98.75	502.50		.44				
1881		52.50	1000.00		.56				
	623 J	0.00	1250.00		.00				
1365		06.25	346.00		.00				
	809	0.00	725.00		.96				
1746		41.25	0.00		.00				
	649	0.00	1250.00	1015					
1651		32.50	0.00		.00				
	648	0.00	1250.00		.00				
1302		00.00	497.50		.00				
	635	0.00	1250.00		.00				
1346		03.61	548.75	726	.83				
2560		32.99	586.67		.73				
1719	333 5	38.75	0.00	1015					
	650	0.00	1250.00	1040					
973	521 4	70.00	486.25	720	.22				
145	500 3	93.89	545.00	748	.50				
1365		06.25	346.00		.00				
1860		51.25	501.25		.50				
1922		56.25	1015.00		.46				
	623	0.00	1250.00	735					
1732		40.00	0.00	1040					
	650	0.00	1250.00	1040					
1288		98.17	498.31	750					
1302		99.97	502.70		.69				
110		99.97	445.26		.16				
899		62.76	588.75		.00				
810		55.00	495.00		.04				
118		90.76	553.75		.00				
206		00.27	457.91		.11				
2407	∠⊥4 6	00.77	541.25	/19	.04				

Col.	Туре	Name	ta	Flow in	Flow out
_			[°C]	[W]	[W]
171	BC_SIMPL	BCE		0.00000	12.78671
174	BC_SIMPL	BCI - HFhorizon		8.24496	0.00000
175	BC_SIMPL	BCI - HFvertika		4.54145	0.00000

The following page shows the calculation models and the associated isotherm representations and temperature curves.

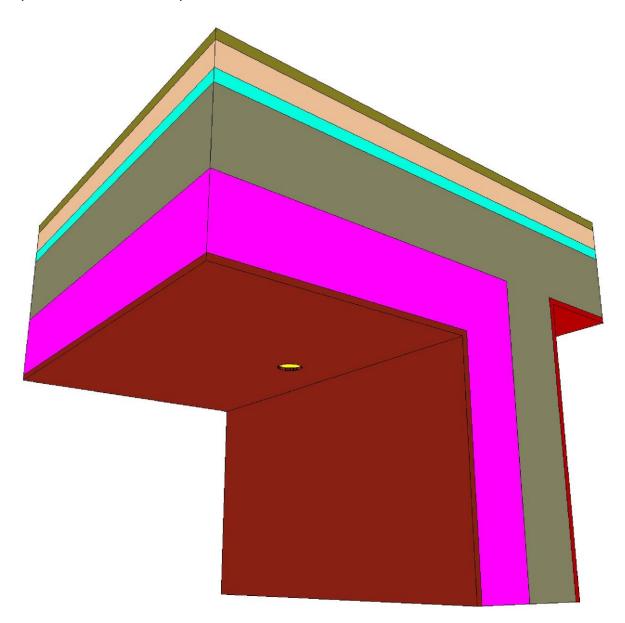
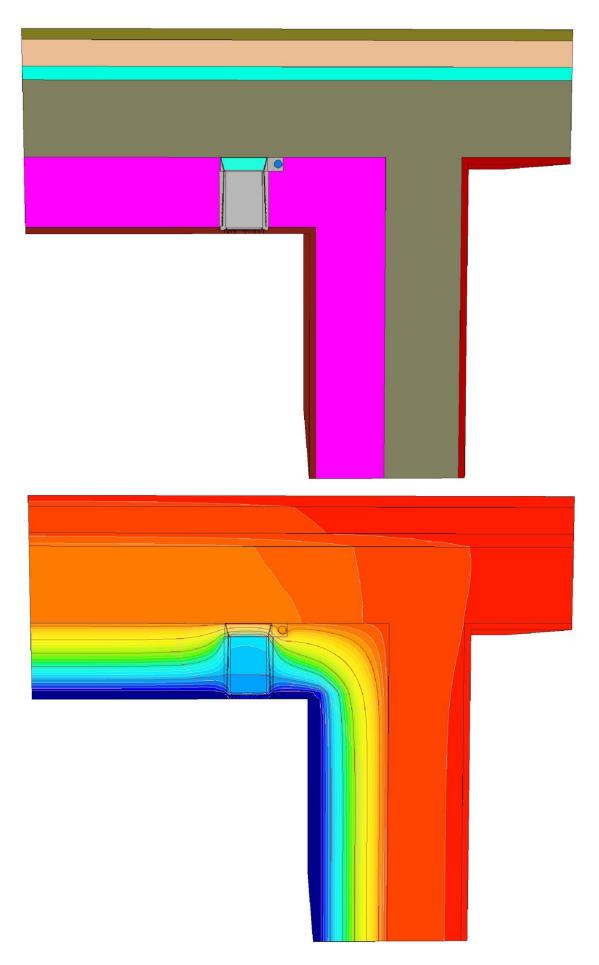



Figure 4: Model representation 160 mm insulation thickness

Documentation for heat flow simulation of installation housings in ETICS – KAISER GmbH & Co. KG

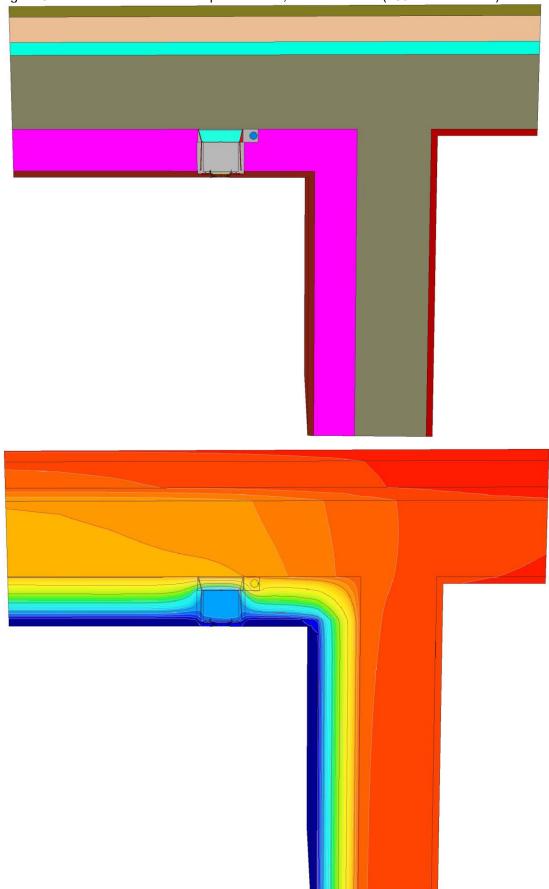


Figure 5: Material and isothermal representation, vertical section (160 mm insulation)

Figure 6: Material and isothermal representations, vertical section (100 mm insulation) Note: This document is a third party translation. Only the original German version of this document is legally valid.

KAISER 160 mm insulation thickness	hsi = 7.69, hse = 25
T _i [°C]	20.0
T _a [°C]	-10.0
QSolido, undisturbed [W]	7.45221
Q _{Solido, WB} [W]	8.33197
T _{min} , wB [°C]	19.20
Uwall [W/(m ² K)]	0.2484
_ 、 /=	
<u>χw</u> β [W/K]	0.0293
Ueq WB [W/(m²K)]	0.2777
Mod. 1 (end terraced house)	CO 00
Quantity	60.00
Σ additional losses [W/K]	1.75952
Area (AW to outside air) [m ²]	184.2
ΔU [W/m ² K]	0.00955 0.010
Limit value free of heat bridges [W/m²K] Requirement fulfilled?	Yes
Mod. 2 (non-residential buildings)	165
Quantity	290.00
Σ additional losses [W/K]	8.504346667
Area (AW to outside air) [m ²]	867.9
ΔU [W/m ² K]	0.00980
Limit value free of heat bridges [W/m ² K]	0.010
Requirement fulfilled?	Yes
KAISER 100 mm insulation thickness	hsi = 7.69. hse = 25
KAISER 100 mm insulation thickness	hsi = 7.69, hse = 25 20.0
T _i [°C]	20.0
T _i [°C] T _a [°C]	20.0 -10.0
Ti [°C] Ta [°C] Qsolido, undisturbed [W]	20.0 -10.0 12.13059
T _i [°C] T _a [°C] Q _{Solido, undisturbed} [W] Q _{Solido, WB} [W]	20.0 -10.0 12.13059 12.78671
Ti [°C] Ta [°C] Qsolido, undisturbed [W] Qsolido, wв [W] Tmin, wв [°C]	20.0 -10.0 12.13059 12.78671 18.75
Ti [°C] Ta [°C] Qsolido, undisturbed [W] Qsolido, WB [W] Tmin, WB [°C] Uwall [W/(m ² K)]	20.0 -10.0 12.13059 12.78671 18.75 0.4044
T _i [°C] T _a [°C] Qsolido, undisturbed [W] Qsolido, WB [W] T _{min} , WB [°C] U _{Wall} [W/(m ² K)] χ _{WB} [W/K]	20.0 -10.0 12.13059 12.78671 18.75 0.4044 0.0219
Ti [°C] Ta [°C] Qsolido, undisturbed [W] Qsolido, WB [W] Tmin, WB [°C] Uwall [W/(m ² K)]	20.0 -10.0 12.13059 12.78671 18.75 0.4044
T _i [°C] T _a [°C] Q _{Solido, undisturbed} [W] Q _{Solido, WB} [W] T _{min, WB} [°C] U _{Wall} [W/(m ² K)] χ _{WB} [W/K] Ueq WB [W/(m ² K)]	20.0 -10.0 12.13059 12.78671 18.75 0.4044 0.0219
Ti [°C] T _a [°C] Q _{Solido, undisturbed} [W] Q _{Solido, WB} [W] T _{min, WB} [°C] U _{Wall} [W/(m ² K)] χw _B [W/K] Ueq WB [W/(m ² K)] Mod. 1 (end terraced house)	20.0 -10.0 12.13059 12.78671 18.75 0.4044 0.0219 0.4262
T _i [°C] T _a [°C] Q _{Solido, undisturbed} [W] Q _{Solido, WB} [W] T _{min, WB} [°C] U _{Wall} [W/(m ² K)] χ _{WB} [W/K] Ueq WB [W/(m ² K)] Mod. 1 (end terraced house) Quantity	20.0 -10.0 12.13059 12.78671 18.75 0.4044 0.0219 0.4262 80.00
Ti [°C] Ta [°C] Qsolido, undisturbed [W] Qsolido, wB [W] Tmin, wB [°C] Uwall [W/(m ² K)] χwB [W/K] Ueq WB [W/(m ² K)] Mod. 1 (end terraced house) Quantity Σ additional losses [W/K]	20.0 -10.0 12.13059 12.78671 18.75 0.4044 0.0219 0.4262
$T_{i} [^{\circ}C]$ $T_{a} [^{\circ}C]$ $Q_{Solido, undisturbed} [W]$ $Q_{Solido, WB} [W]$ $T_{min, WB} [^{\circ}C]$ $U_{Wall} [W/(m^{2}K)]$ $\chi_{WB} [W/K]$ $Ueq WB [W/(m^{2}K)]$ $Mod. 1 (end terraced house)$ $Quantity$ $\Sigma additional losses [W/K]$ $Area (AW to outside air) [m^{2}]$	20.0 -10.0 12.13059 12.78671 18.75 0.4044 0.0219 0.4262 80.00 1.749653333 184.2
$T_{i} [^{\circ}C]$ $T_{a} [^{\circ}C]$ $Q_{Solido, undisturbed} [W]$ $Q_{Solido, WB} [W]$ $T_{min, WB} [^{\circ}C]$ $U_{Wall} [W/(m^{2}K)]$ $\chi_{WB} [W/K]$ Ueq WB [W/(m ² K)] Mod. 1 (end terraced house) Quantity $\Sigma additional losses [W/K]$ Area (AW to outside air) [m ²] $\Delta U [W/m^{2}K]$	20.0 -10.0 12.13059 12.78671 18.75 0.4044 0.0219 0.4262 80.00 1.749653333 184.2 0.00950
$\begin{array}{l} T_{i} [^{\circ}C] \\ T_{a} [^{\circ}C] \\ Q_{Solido, undisturbed} [W] \\ Q_{Solido, WB} [W] \\ T_{min, WB} [^{\circ}C] \\ U_{Wall} [W/(m^{2}K)] \\ \chi_{WB} [W/K] \\ Ueq WB [W/(m^{2}K)] \\ \\ Mod. 1 (end terraced house) \\ Quantity \\ \Sigma additional losses [W/K] \\ Area (AW to outside air) [m^{2}] \\ \Delta U [W/m^{2}K] \\ Limit value free of heat bridges [W/m^{2}K] \end{array}$	20.0 -10.0 12.13059 12.78671 18.75 0.4044 0.0219 0.4262 80.00 1.749653333 184.2 0.00950 0.010
Ti [°C]Ta [°C]Qsolido, undisturbed [W]Qsolido, wB [W]Tmin, wB [°C]Uwall [W/(m²K)] χ wB [W/K]Ueq WB [W/(m²K)]Mod. 1 (end terraced house)QuantityΣ additional losses [W/K]Area (AW to outside air) [m²] ΔU [W/m²K]Limit value free of heat bridges [W/m²K]Requirement fulfilled?	20.0 -10.0 12.13059 12.78671 18.75 0.4044 0.0219 0.4262 80.00 1.749653333 184.2 0.00950
$T_{i} [^{\circ}C]$ $T_{a} [^{\circ}C]$ $Q_{Solido, undisturbed} [W]$ $Q_{Solido, WB} [W]$ $T_{min, WB} [^{\circ}C]$ $U_{Wall} [W/(m^{2}K)]$ $\chi_{WB} [W/K]$ Ueq WB [W/(m ² K)] Mod. 1 (end terraced house) Quantity $\Sigma additional losses [W/K]$ Area (AW to outside air) [m ²] $\Delta U [W/m^{2}K]$ Limit value free of heat bridges [W/m ² K] Requirement fulfilled? Mod. 2 (non-residential buildings)	20.0 -10.0 12.13059 12.78671 18.75 0.4044 0.0219 0.4262 80.00 1.749653333 184.2 0.00950 0.010 Yes
Ti [°C]Ta [°C]Qsolido, undisturbed [W]Qsolido, wB [W]Tmin, wB [°C]Uwall [W/(m²K)] χ wB [W/K]Ueq WB [W/(m²K)]Mod. 1 (end terraced house)QuantityΣ additional losses [W/K]Area (AW to outside air) [m²] ΔU [W/m²K]Limit value free of heat bridges [W/m²K]Requirement fulfilled?Mod. 2 (non-residential buildings)Quantity	20.0 -10.0 12.13059 12.78671 18.75 0.4044 0.0219 0.4262 80.00 1.749653333 184.2 0.00950 0.010 Yes 380.00
Ti [°C]Ta [°C]Qsolido, undisturbed [W]Qsolido, wB [W]Tmin, wB [°C]Uwall [W/(m²K)] χ wB [W/K]Ueq WB [W/(m²K)]Mod. 1 (end terraced house)QuantityΣ additional losses [W/K]Area (AW to outside air) [m²] ΔU [W/m²K]Limit value free of heat bridges [W/m²K]Requirement fulfilled?Mod. 2 (non-residential buildings)QuantityΣ additional losses [W/K]	20.0 -10.0 12.13059 12.78671 18.75 0.4044 0.0219 0.4262 80.00 1.749653333 184.2 0.00950 0.010 Yes 380.00 8.310853333
Ti [°C] Ta [°C] QSolido, undisturbed [W] QSolido, wB [W] Tmin, wB [°C] Uwall [W/(m²K)] χ wB [W/K] Ueq WB [W/(m²K)] Mod. 1 (end terraced house) Quantity Σ additional losses [W/K] Area (AW to outside air) [m²] ΔU [W/m²K] Limit value free of heat bridges [W/m²K] Requirement fulfilled? Mod. 2 (non-residential buildings) Quantity Σ additional losses [W/K]	20.0 -10.0 12.13059 12.78671 18.75 0.4044 0.0219 0.4262 80.00 1.749653333 184.2 0.00950 0.010 Yes 380.00 8.310853333 867.9
Ti [°C] Ta [°C] Qsolido, undisturbed [W] Qsolido, wB [W] Tmin, wB [°C] Uwall [W/(m²K)] χ wB [W/K] Ueq WB [W/(m²K)] Mod. 1 (end terraced house) Quantity Σ additional losses [W/K] Area (AW to outside air) [m²] Δ U [W/m²K] Limit value free of heat bridges [W/m²K] Requirement fulfilled? Mod. 2 (non-residential buildings) Quantity Σ additional losses [W/K]	20.0 -10.0 12.13059 12.78671 18.75 0.4044 0.0219 0.4262 80.00 1.749653333 184.2 0.00950 0.010 Yes 380.00 8.310853333 867.9 0.00958
Ti [°C]Ta [°C]Qsolido, undisturbed [W]Qsolido, wB [W]Tmin, wB [°C]Uwall [W/(m²K)] χ wB [W/K]Ueq WB [W/(m²K)]Mod. 1 (end terraced house)QuantityΣ additional losses [W/K]Area (AW to outside air) [m²] ΔU [W/m²K]Limit value free of heat bridges [W/m²K]Requirement fulfilled?Mod. 2 (non-residential buildings)QuantityΣ additional losses [W/K]	20.0 -10.0 12.13059 12.78671 18.75 0.4044 0.0219 0.4262 80.00 1.749653333 184.2 0.00950 0.010 Yes 380.00 8.310853333 867.9

Documentation for heat flow simulation of installation housings in ETICS - KAISER GmbH & Co. KG

Table 1: Overview of the simulation results

5 Summary

The installation housing system from KAISER GmbH & Co. KG represents a successful design in terms of the tested parameters. The additional heat losses caused by the constructive heat bridge can also be compensated for in the high-energy new building segment and are also suitable for use in passive houses. They should nevertheless be taken into account in the energy balance, especially if a relatively large number of luminaires are installed. Room-side surface condensation and cold air drop due to low surface temperatures can also be ruled out according to the analysed structure. The surface temperatures are over 19 °C even at -10°C outside temperature. This almost corresponds to the surface temperature of the undisturbed wall.